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SYMBOLS

net attractive force between grains (cohésion)

area of mineral
total area of water and mineral
area of water

specific heat of the soil

= specific heat of the water
rate of change of internal energy of soil

rate of change of internal energy of water

force in the soil

force in the water

drag force between water and soil
specific gravity of solids
specific gravity of water
gravitational constant

mercury height (back pressure)

= elevation head

excess pore pressure head

= hydrostétic head

heat flux through the soil alone

= heat flux from soil to water

heat flux in the water alone
heat flux from water to soil
hydraulic gradient
coefficient of earth pressure

coefficient of éarth stress at rest
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- coefficient of permeability

length of soil sample

porosity

head water pressure

the slope of the Fermi function at the point of reflection

the distance froﬁ the point of reflection to Y axis in the rectangular
co-ordinate system

pore pressure in the water (a]] tensile stresses are considered
positive)

volume of the soil

total volume

vo]umé of the voids

volume of water

approach velocity based on the total area of mineral aﬁd rock
velocity of settlement. downward

velocity of water flow upWard

weight of the soil

space dimension which is positive upward

B, C, D, F, G, J, M, Q, and R are arbitrary constants in various equations.

w
i

coefficient of heat conductivity of the soil

coefficient of heat conductivity of the water

= buoyant weight of soil = Y - Yy

total unit weight of soil and water
unit weight of water, assumed to be constant
rate of strain in vertical direction

temperature of the soil

temperature of the water -



o = total stress acting on the total area

Qi
"

effective stress

Qu
it

intergranular stress

O~ Mean principal stress at shear failure

o .= mean princiba1 stress when there are no shear stresses
o, = vertical stress

Toctf = octahedral shear stress at failure
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ABSTRACT

The squeez1ng and ejecting of entrapped overpressured water from clay
1ﬁto sandaqu1fers1s advanced as an explanation for the source of energy for
blowouts during well drilling, artesian flow of wells, and the land sub-

- sidence where pumping has occurred. During clay sediment deposition and pro-
gressive burial entrapped water can be overpressured if the permeability
decreases faster than the porosity. Laboratory tesfs presented for clays

show that the permeability decreases from 6 to 12 orders of magnitude faster
than porosity. Misapplication of Terzaghi's effective stress principal 1ead$ _
to the conclusion that the water stress cannot exceed the overburden stress,
but the conclusion should have been that the water force canhot exceed the
overburden for;e. If the watef area is small and the water force supports

a significant part 6f the overburden froce then the pore pressure can be much
higher than the overburden stress.

Since fhe water stress at the interface between clay and sand must be
equal, ultra high hydraulic gradients can develop‘to force the water from
clay to the sand a]]owing the clay to consolidate and the water ih the sand to
overpressure.

A1l available Thermo-Mechanical field equations are presented for
application for a new consolidation theory that does not assume the per-
meability is a constant and the void ratio is a linear function of
effective stress. Laboratory results are presented to show that this is true.

A polynomial equation of state for sea water in terms of pressure and
temperature is presented. Through the solution of a non-linear differential
equation, the geostatic relationship between depth and water pressure has been
determined for a linear increage in temperature with depth. Pressurés in excess

-of this pressure constitutes an "overpressure".
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INTRODUCTION

‘In an overpressured zbne'in the earth the pore pressure is greater
than hydrostatic pressure. Data from oVer 4,000 wells in the Gulf Coast
area show that pore pressures in oil wells are usually between hydrostatic
and overburden or geostatic pressures, but in the overpressuréd'region of
the Gulf Coast area, some measured pore water pressures even exceed
geostafic pressure and are thought to be the major cause of blowouts and
stuck drill stems (92). When the logs of over 4000 oil wells were reviewed
by Dave Powley of Amoco 0i1 Company it was found that there were general
trends in pore pressure, temperature, resistivity, porosity and sonic
velocity as a function of depth. Figure_l shows these general trends.

During the last 20 years there have been 33 blowouts involving mobi]e
offshore drilling rigs. These failures were distributed all over the world.
but primarily in areas where the rate of depésitibn is ﬁfgh (84). Some |
pertinent data on these accidents are given'in Tab]e 1. In the same period
there have been 53 blowout accidents involving permanent structures in
federal o0il and gas operations in the outer continental shelf of the
Gulf of Mexico alone (113). Table 2 gives some of the pertinent data on
these accidents. If the hazards of overpressured sediments are to be
avoided, better techniques must be developed to locate them.  These new
techniques will depend on the knowledge of how these zones can develop.

In a b]oWout large amounts of fluid are ejected with great velocity.
The kinetic energy may,even'be sufficientvto blow the drill stem out of
the bore hole and sometimes blow down the drilling rig itself. Sometimes

cavities are created around the bore hole big enough for the rig to fall
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into. If gas is present in the fluid it may catch afire and the rig

may burn.. Blowouts occur throughout the”wor1d and are not confined to
offshore localities and to deep 0il wells. In fact, blowouts have occurred
of depths as little as 185 ft. (92). |

Overpressured sediments have been the subject of much speculation and
several theories have been advanced to explain them. It is usually |
tacitly assumed that given enough time all pore pressures must decrease
to a steady state hydrostatic condition, therefore most explanations involve
some method of generation of either pressure or additional water.

One grdup of papers describes the possibi]ity of sediment settling wifh
no decrease in porosity or no expulsion of water (3,47,74). Since the water
wi]]lbe heated because of the earth's thermal gradient, pressure will be
developed. This process requires an impermeable barrier and some hiatus
in the consolidation process. .

Another group of papers describes the generation of watgr by chemical
alteration of the mineré]s (22,50,62,91). According to Powley (92), the
cores from many overpressured oil wells are nearly identical mjnera]é
ogically to the sediments being deposited. This raises doubts as to the
reliability of the chemical alternation theory. Certainly this theory can-
not explain near surface overpressured sediments.

The mechanical process of sedimentation has generally been overlooked
as a source of overpressures, and in fact, it has been thought that it is
impossible for pore pressures ever to exceed the geostatic pressure. The
reason for this belief is Terzaghi's effective stress principal which
states the total stress is equal to the sum of the effective stress in

the soil and the pore pressure in the water. It is reasoned that the

19



maximum pore pressure would be equal to the maximum total stress or

the geostatic stress when the effective_stréss is zero. This assumption
is debatable, since the area of the mineral and thé area of the water
are also involved.

For equilibrium at'any depth and tfme the force in soil plus the
force in the water must equal the total weight of the overburden. ‘Since
force is a stress times an area, the stress in soil times the area of the
soil fabric is the soii force and the pore wﬁter pressure times the area
not occupied by the soil fabfic is the water force. The area of the water
ét any depth is equal numericaliy to the porosity and the area of the soil
fabrit at the same depth is one minus the porosity.

withlprogressive bﬁria], additional deposition or a chahge in the
water level the water forces and soil forces must change. Any change in
the soil fabric force causes a change in the porosity and'apy‘change in
porosity causes a change in permeability. If in this process (as in a
clay) the permeability decreases faster than the porosity the water will
be entrapped. Further Toading will oniy caﬁse the pressure in the water
to increase. ' Conceivably this pressure could increase to the point that
the pressure in the water times the area of the water was equal to the
overburden load. Since the area of the water is the porosity the maximum
pore pressure that could develop would be the overburden divided by the
porosity. If the porosity was 10% then the pore pressure might approach
10 times the overburden pressure.

However, blowouts occur only when there is available source of water
with a high internal energy that can be readily converted into kinetic

energy. The only geologic structure that can satisfy both requirements
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is a very porous sand or gravel material with high permeability in which
the fluids are under high pfessuré.

Since the sand or gravel structures (aquifers) are so stiff and
permeable it is almost impossible for the pore pressures in excess of
hydrostatic to develop unless they are confined by soft and almost im-
permeable clays. Once confined the pore fluid can be overpressured by
heat or by pumping additional fluid into the pore spaqé.

The pore pressure at the interface of a t1ay layer and a sand layer
must be equal. If there is a high pore pressure in the clay and low
pore pressure in the sand an ultra high hydraulic gradient wi]]lbe
established and water will flow slowly into the sand»and overpressure
the water in the sand.

Thus the source of water for a blowout is the water in the sand
layer. The source of energy is the weight of the overburden.causing the
overpressures in the clay which induces the overpressures in the sand.

Just as with blowouts, gréund subsidence thét deﬁe1ops from ground
water removal is controlled by the permeability of the clay layer adjacent
to a sand layer or aquifer. In fact a flowing or artesian well is nothing
more than a controlled blowout. Subsidence develops when there has been
sufficient flow so that the poare pressure in aquifer is lowered causing a
new flow of water from the overpressure clay. As the water»flows out of
the clay, the clay consolidates and the surface}subsides. The blowout
is the initial effect of piercing the aquifer, the artesian flow the
second effect as the elastically compressed water expands and
the final effect is the subsidence which may continue for many years after

pumping is stopped.
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A1l of these phenomena are cbntro]Ted by the properties of the
clay as ft develops the high excess pore preséures. The study of clay
is complicated by the fact that the clay pérticles are roﬁghly the same
size as water molecules. The pore pressure in clay has never been
measured; whét has been measured and called the clay pore pressure is
the pressure in the water adjacent to the ctay.

- The detection of potential blowout sites depends on.the‘detection
of clays or shales for which the permeability decreases faster than the
porosity when loaded.

This work has two purposes. The first is to develop a theory to
explain the non-chemical development of excess pore pressures. The research
has made use of all of the thermo-mechanical field equations and has
led to the reexamination of assumptions or dogma that through repeated use
has developed the flavor of truth. | '

The second purpose of the study is to develop test equipment and
procedures to determine‘émpirica]1y for fine grained marine sediments
the relationships between: 1) the consolidation pfessure and -porosity,
and 2) the permeability and porosity, so that the effects of the mechanical .
process could be reevaluated to determine if progressive burial of sediment
automatically causes 6verpressures to develop. |

The theoretical study is partially complete and the progress is given
in the following pages. The experimental equipment has been developed and
exciting results have been obtained. This report summarizes the result of

Phase I or the first years work on "Overpressured Marine Sediments." The

total.work is envisioned as a four year study.

22



5]

9

This work needs to be extended to inc]ude the effect of heating

as the soil is progressively buried. Other clays with different

mineralogical make up need to be tested.to verify the genera]vtheory béing

developed.

This work will have application in areas other than the study

of blowouts and the artesian withdrawal of water from a aquifier. Some

of these areas are:

1.
2,

Settlement rates of river deltas and ocean basins;

Subsidence rate of onshore areas due to production of oil and
water wells, '

Instability of submarine sediments that cannot drain and develop
shear strength as it affects submarine slopes, stationary plat-
forms, mobile platforms that bear on the bottom and pipelines
laid on the ocean bottom; -

Local effects that contribute to diapirism, folding and faulting
and; .

Sediment Tayering which causes reflections and refraction of
sound waves in exploration.
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THEORETICAL STUDY

The theoretical work has foT]owed four lines of investigations.

They are as follows:

I.

I1.

ITI.

IV.

Reexamination of assumptions generally accepted as truth.

These assumptions are for the apptication of Terzaghi's effective
stress, Archimedes buoyancy principle, and’the seepage force
concept to consolidation problems.

Redevelopment of the consolidation equation using the thermo-
mechanfca1 field equations without the simplifying assumptions of
constant permeability and a 1fnear relationship between void
ratio and effective stress which is known tbibe wrong. "Darcy's
Taw" for flow through porous media was used but fhis relation-
ship also needs reexamination. The field equations considered
are applied to the soil and water individually. Théy are for

the conservation of mass, linear momentum and energy. The "Fourier
heat conduction law" and the specific heat concept is also used
without reexamination.

A nonlinear equation of state for sea water has been developed
from literature sources. It gives the density of water as a
function of pressure and temperature. The relationship between
depth and pressure has been determined for sea water in the soil
where the temperature increases linearly with depth. This is the
geostatic condition for sea water in soil.

The possibility of shear pTane development in the soil as it is
progressively buried has also been studied. This could have a

major influence on permeability and stfength of the sediment.
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The progress in each one of these areas is as follows.

I. Reexamination of thé Assuhpthns
A. Reexamination of the Terzaghi's effective stress principle.
These concepts or ideas have been reexamined to see if they really
apply to saturated soil or rock and if they do what the restrictions are.
Applying the equivalence concept, the force on any plane in a material
must be équa? to the force on the other side of the plane. The stresses
integrated over areas give forces. Considering the normal stresses in a

geostatic situation as shown in Figure (2) it is seen that:

o - a = (c + A) a + ua, | . (M)
where
at = total area of water and mineral
am = area of mineral

a_ = area of water

o = total stress acting on the total area

G = intergranular stress

A = net attractive force between grains (cohesion) and

u = pore pressure in the water (A1l tensile stresses are
considered positive) |

If the total area a, = 1 and the total volume Vt = 1, then the average

t

area of the mineral a_ = 1-n and the average area of the water'aw = n, if the

porosity n is the volume of the void VV divided by the total volume Vi
Heretofore, it has been contended that the pore pressure u could never

exceed the geostatic stress o because Terzaghi's effective stress principal

25



e . - .aw m. 5 I~

RN B AN
. ~ - ) ! //m

.ﬂ/ B> < o ” <] W
s \\\N\\VANANNNNN\

—

CITTTTITTTTeT,

—B
-
—>
—
—
S —p
PO
—p
—_—
R——
—

2

A

26



was considered to be fact as given by
G=0+u g (2)

This relationship requires that all three stresses act over the ‘total
area, a; = 1, which of course, is impossible. & is called the effective
stress.

Solving for the pore pressure u is seen that:

u=2- (1—nr)](§ + A) (3)

Should the net attractive force between particles a and the inter-

granular stress o be zero then
u = (4)

This implies that if the porosity n is. 10% the pore pressure U

could theoretically be 10 times as large as the total overburden stress.

B. Archimedes buoyancy principal
To study the Archimedes principal the equation of linear momentum

for the static case is written

OFw _
52 5z T Mt - )

where FS = force in the soil

Fw = force in the water
Yi T total unit weight of soil and water
z = space dimension which is positive upward
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If the area of the water a, is equal to the total area ay = 1 then
oFs , 9 u _
5z 3z Mt . (6)

This of course implies that the a is zero. The pore pressure u is

-u =y, (hyy + hgy) = (7)
where

Yo unit Qeight of water, assumed to be constant

hhy = hydrostatic head

hex = excess pore pressure head

The hydraulic gradient i is defined for a constant density fluid as

s -23h (8)
dz
where
h = he] * hhy ¥ hex (9)
and
he] = elevation head
Therefore
. _h = ahe] + 8hhy + oy -~ (10)
3z 4 d 7
and since
oher _ | (1)
3 2
then
j=op e 20 | S (12)
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or

-y (1+1) | | (13)

When this is combined with the static equi?ibrium equation and the
assumption of the water acting over the entire area which is unity, it

is seen that

oFs : - o 14
aZ+ (]+1) YW Yt ( )

This equation can be rewritten as

._B.Eé i = - = ) 15
3z * Wy = V¢ ™ Yy Yby _ ' (15)

It can be called the buoyancy equation if there is no flow and no

' hydraulic gradient and the equation becomes

aFs _ 16
3z Yby (16)

This is the mathematical form of Archimedes princib]e. It is only
applicable when the contact area of the mineral is zero and there is

no flow.

C. Seepage force
The buoyancy equation can also be used to define the seepage force
_%E§.= Tby ~ Wy (]7)
The term on the extreme right gives the seepage force. It is usually
thought of as the product of fhe hydraulic gradient and the unit weight
of water. Again it requires that the area of the water be equal to the

total area and the velocity of the soil and the water to be constant.
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Quicksand is usually thoughf’to develop when the bouyancy equation

is set equal to zero and

Yby = iYw . ' (18)
or  Yhy : (19)
i =Y
. Yy ) ,

This can result when

oFs__ ¢ (20)-

and the Fs must only be constant, not zero. ft can be seen that the quick

condition also requires that the force in the 3011'Fs'be zero. Again the

 statics must prevail and the area of the water must be equal to the total

area. Each of the statements also assumes that the unit of water is a

constant.

II. Redevelopment of the Consolidation Equations
Using Darcy's Law and Field Equations
A. Conservation of Mass

Although Darcy's law was developed for flow through sand and may not

be applicable to flow through clay it states that

V o= kj 21
3 kj (21)
where Vy T is the approach velocity based on the total area of mineral
and rock
k = is the coefficient of permeability and

it

i = is the hydraulic gradient

For mass to be conserved at any depth the flow of water upward or
/

out of the soil must be equal to the flow of the mineral downward or out

of the water.
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This would require that

-ki (22)

VS'_ Ton velocity of settlement downward

and
(23)

v =
w

1l

%l velocity of water flow upward
When each of these flows are multiplied by their respective areas it is
seen that mass is conserved.

These flows can also be related to the change of porosity of the

mineral by the following equation.
373 o)
This assumes that the water is 1ncompre$sib1e.

If this is not assumed, then for the water the following equation

must hold

3 (ki) 3 (ny)

9 z Tt (25)
- and for theksoiT |
] (Yski) 3 (1—n)YS (26)

3z ot
In the first of these equations the unit weight of water is Yy

which is defined as

Yo = By Yo (27)

where Gw is the specific gravity and a function of both temperature

© and water pressure u and Yo = unit weight of water at 4°C and at one

atmosphere of pressure. The equation for the specific gravity of sea
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water has been developed from literature sources and is given

~later.

Also vg = 6 Y, : | i | (28)

where GS is the specific gravity of the solids. The specific gravity
of the solids GS varies little in the range of interest since the mineral
is one order of magnitude less compressible than the water.

For the soil the continuity equation reduces to

ski_an v | (29)
3z 2t

‘and us?ng*this equation with the similar equation for water it is found

that

kiaYW i} na'\{w ) ~ (30)
3 Z ot

B. Equation of motion
The equation of motion can be also written for both the soil and the
water separately.

For the soil

= W
§l%_§_f9.(]_n) W Fy d(“é? Vg (31)
. dt

where o + a is the stress in the soil acting over the area of the soil
as
ws is the weight of the soil and equal to the VSGSYO

VS is the volume of the soil and equal to 1-n
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fq is the drag force between water and soil

Substitution of these values yields

3(5+A) (1-n) _ _ T8Ty o d(kid) (32)
d 2 (1-n) GyYo * Ty = g dt

A similar equation can be deve]bped for the water. It is

G vy :
alun) ~ %wo  d(ki)
5z MY~ Ty g dt’ (33)

if it is assumed that the unit weight of water is a constant. These two’

equations when added become

3 [(5+A) (1-n)tun] _ [(1-m)Gey, + n6 v, ] = Yo [G,-6.Jd ki (34)
. 9z g - dt .

and this equation can be reduced to

30 - . d(ki) 35
5z T Yo[Gs Gw] dt , . (35)

where
o is the total stress
e is the total unit weight
and g is the gravitational constant.
Subtraction of the two equations of motion allows the drag force f

d
to be evaluated.

C. Conservation of energy

The energy equation can be written for both the soil and the water.

For the soil in uniaxial strain it is
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'S - ah
| “g E (0V+A) g+ §*§_+ hSw (36)
where
ZS = GSYO
E_ = rate of change of internal energy that includes the potential

energy

5V+A = intergranular stress in vertical direction

[+] . N . N .
e = rate of strain in vertical direction and

where

ki
3 vy Ay

3z 3z
hS = heat flux through the soil alone
by = heat flux from water to soil

For the water the energy equation can be written

N <}
ME = ud

[T}
=
<

- GwYo
E = rate of change of internal energy of the water

u = pore pressure in the water

ki
e 2V
V 3z 9 2
' hw = heat flux in the water a]oﬁe
hSW = heat flux from soil to water

The heat flux from the soil to the water must be the negative of

flux from soil to water or

hSW * hWS =0
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where
o, = coefficient of heat conductivity of the water and

The Specific_heat Concept can be applied to the soil and watér to give

3 h Y 30, _
S =18 G 3 (45)
3 2 g a3t
where
Ys = Gsyo and

Cvs= specific heat of the soil

For the water the equation becomes

T 3 0y . (46)
3z g vw 9 t

where
Yy © GwYo and
C,, = the specific heat of the water
When the two equations for either the soil or water are combined, the

classic heat equation results.

2 ' ‘
3 0 _ Y
= |C,'a] 3. © 47
g[;]ai’_ | @)

For the soil the term in the brackets is a function of porosity, n,

~and must be evaluated experimentally.

For the water the steady state condition is, %%~= 0, therefore:
2
i—g—: O, (48)
3z ‘
§§-= a constant = F, and (49)



D

O

YR

= G+Jz where G and J are arbitrary constants This'last equation is
borne out by temperature measurements in ofl we11s, and Tends credence

to the genera] theory.

III. Derivation of the Geostatic Pore Pressure Equatioh
Before the mechanics of pore pressures can be developed further, it is
necessary to consider the effect of temperatureAand pressure on the density

of sea water

The non-linear spec1f1c grathy of sea water has been developed’ from

data in the literature (34), with salinities betweenm 30% and 40%, and it was

found that:
.Gw =g (0) + f(u) + uh(e) (50)
where: _ .
g(0) = 1.02753169 + 6.36 x 1078 0 - 6.52 x 1078 o + 2.0 x 1078 &3
f(u) = 2.992 x 107° u | (52)
h(e) = 1.6 x 107 e -1.0x 1086 (53)

u is the water pressure in psi (0-10,000 psi, range)
and © is the temperature in ° centrigrade (0-200°C, wange) where the
percent error is never greater than 0.17%.
When the Tinear sub-bottom profile temperature equat1on,
=G +Jz | (54)
is combined with the specific gravity equation, them the following equation
results. |

G, = 9y (z) + f(u) + u hl(z). (55)
It will be seen that for the hydrostatic case with mo excess pore pressure

or upward flow equilibrium requires that

- 37

(51)



u = ’ = 56
57 = Gy Yo = 95(2) + f (u) + uh,(z) (56)
where gy, and hy are new functions of depth.

This nonlinear equation has a unique solution (Ricca£i form).. It
~determines the hydrostatic pressure as a non-linear function of depth.
The solution of this non-linear equation is given in Appendix I.

The specific gravity equation is particularly useful in all the field

.equations where the water usually has been taken as incompressible.

IV. Shear Deformation During Progressive Burial
The ratio of the principal effective stresses is called K. In the
one~-dimensional or uniaxial strain procesé,'like progressivé bufia1,vthe
principal étresses are horizontal and vertica]land K is called Ko' At
the mudline, K0 = 1 because the soil has little or no cohesive strength.
It is being found that as the material is progressively buried to greater
depths, the porosity decreases and cohesive strength A develops causing

KO to decrease. There is a limit to this process and, when K = K_, the

£
material fails in shear, fractures develop, and friction becomes the dom-
inating strength property. At this point, permeability radically increases
since water can flow through the discontinuities. It is believed that this
is the effect being seen when the Mississippi delta sediment reached 13%
porosity. |

Probably further burial causes the cracks to close; and the per-
meability decreases as the porosity decreases. This event probably occurs

at large pressures unless upheaval has occurred to lTower the hydrostatic

pressure.
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These points are illustrated mathematically in the following way.

In the uniaxial test the mean principal stress, 0> Can be shown to be:

o =g (]+2Ko) . . _ (57)
m Vg
3 -
where: o, is the vertical stress, and

Kb is the coefficient of earth stress at rest.

.A]so, in the uniaxial test the octahedral shear stress, Toct? can

be shown to be:

= V2 58

TO‘C'E. — 'g “—KO’) 0’v . . ( )
Experimental results, extrapolated for the Weld clays, show that:

= n R 59

mo = Pn o (59)

= gpR 60

Of Bn (60)

Toctf , Cn (61)

where: D, B, C and R are constants for the materials,

Oﬁo is the mean principal stress when there are no shear stresses,
Opnf is the mean principai'stress'at shear failure,

Toctf is the octahedral shear stress at failure, and

n is the porosity.

Since KO must vary between one and Zero as porosity n varies be-

tween 100% and zero, a one to one correspondance might be assumed.

If Ko is equal to n then the Toctf Can be related to Ouf by the

following equatfons:

V2 '
Toctf _ % 3 (]'Ko)

¢ .
B o - T+2K (62)
mf o, o)
Vv 3
to give the porosity:
p = V2 B-C at shear failure, | . (63)
2C + V7B
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the vertical stress:.
R ) . : .
30n ~ - (64)

BB ROk ¢ (k)

in the range of porosities before failure, and

_ 3DnR

oy = Tion after failure.

These relationships are shown in Figure 3.

V. Further Developments and Boundary Conditions

There have been other developments in thé study of the trénsient
flow of water through soil as the hydraulic gradient is changed. The
application of gas partial pressuke conceﬁts to the prob]em has been
considered. A1l of the equations have been combined with the equations
for the stress-porosity, and permeability-porosity developed in the
eXperimenta] part of the WOrk, howev;r,‘this work is not yet finished.

Before the equations caﬁ be integrated, boundary or initial

conditions must be deve]oped’fdr all variables to be studied. The

'physica1 boundaries are the bottom of ocean Zb’ the ocean surface Zs

and the elevation of the sedimentary basement Zr. The initial time to can be
set at any value.

At the ocean bottom the porosity n is usually around 78% to 80%
depending on the fype of mineral. The temperature © is always above
freezing and approximately 2°C. at abyssal depths. Near shore, thé bottom
temperature approaches the average ground temperature and in temperate zones
near 20°C. The pore pressure u is equal to the weight of the water
over the bottom. The variation of pore pfessure u versus depth for

oceans is pretty well known. These values would hold for.a11 times.
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The rate of soil deposition on the bottom in mass per unit area per

~unit time and the rate of rise or fall of fhe_ocean surface are the last

 two boundaky-conditions'required. The first may be estimated from suspended

sediment analysis; the Tast will have to come from geologic studies.

. 42



2

'EXPERIMENTAL STUDY

Test Equipment and Procedure

A consolidometer-permeameter was built to test soil sample to pres-
sures of 10,000 psi. All the consolidation loads Weke.meésured directly
using dead weights and lever systems. There were no electronics, trans-
ducers, load cells, strain gauges, proving rings or other devices that
need calibration or study to prevent misunderstanding‘of’the data being
obtained. A1l flow rates were measured in graduates at atmospheric pressure
and room temperature. The soil samples used were 2.5" in diamefer and
1.5" to 2" long. Starting Qith a submarine saturated slurry, a load was
applied by the lever system and sea water was presséd out of the samp1e.
The load was Teft on long enough for the porosity to bécomeAconstant. Sea
- water was then forced through the sample by another lever system until
the flow rate reached a constant. This process was rebeated'by increasing
the load on the main lever system until 10,000 psi was reached.

Schematic drawing of the equipment are shown in Figures-4 and 5.

Soil Samples

The soil samb]es for this study were taken from sea‘bottom at three
different locations. The 1ocations of the core samples are described in
Table 3. |

The Atterberg limits, Unified Soil Classification, and specific
g}avity for each soil are given in Table 4.

The mineralogical analysis, determined by x-ray diffraction, of

the three materials is given in Table 5.
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FIG. 5.-Schematic Drawing of the Consolidometer-Permeameter
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TABLE 3.

Locations of Three Soil Samples

Material

Location

Depth

Virginia Sediment

Mississippi Delta

Sediment

Gulf of Mexjco

Sediment

Lat. 36 59' N
Long. 76 07' W

Chesapeake Bay

Lat. 29 28' N
Long. 92 21' W
Central Gulf of
Mexico

Lat. 26 58" N
Long. 94 15" W
Western Gulf of
Mexico

Surface of sea bottom
in very shallow water

20 meters below

sea surface

0.5 meter below sea
bottom

2,379 meters below -
sea surface

1.5 meters below

sea bottom

TABLE 4. Atterberg Limits, Classifications, and
Specific Gravities of Three Soil Samples

Material Liquid |{Plastic | Plasticity { Classification | Specific
Limit Limit Index Gravity

Virginia

" Sediment 59.3 39.3 20 MH 2.70
Mississippi

Delta :

Sediment 113.2 32.8 80.4 CH 2.81
Gulf of

Mexico

Sediment 91.0 34.0 57.0 CH 2.77
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TABLE 5. Mineralogical Anafysis Qf‘Three Soil Samples

Minerals Vfrginia Mississippf' Gulf of Mexico
Sediment Delta Sediment Sediment

Smectite ‘ 61.0 67.0
IMlite 52.0 17.0 17.0
KaoTinite 36.0 17.0. 12.0
Chlorite 5.0 | 4.0
Vermiculite 7.0

Quartz 5.0

Consolidation of Test Results

The plot of sample height versus log of time for each increment of
load and for each,soi1‘is given in Appendix II. From the iota1 change of
sample height, the change in void ratioc and change in porosity were v
computed. The e-log p curves of the three samples are shown in F1g 6.
The consolidation pressure for these tests ranged from 36 psi (248.2 KPa)
to 10,125 psi (69.812 MPa). The test data are shown in Append1x I1.
The porosities were plotted on a log-log scale againét‘consolidation
pressures which éhowed the porosity éé a function of verficél pressure
in the procéss of progressive burial. |

The Fermi function (30) was used as a mathematical model to fit
the test data. It shows the model fits the curve very well within the

range of test loads. The equation was developed as follows:

=1 - (66)
Stogo + T

log n'=
1+e
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vertical consolidation stress, in psi,

where o =
n = decimal porosity
e=2.71828
S = the slope of the function at the point of reflection

‘T/S = the distance from the point of reflection to Y axis in the
rectangular co-ordinate system.
The Fermi functions derived for Virginia sediment, Mississippi Delta

sediment and Gulf of México sediment are shown in Figures 7, 8, and 9.

Permeability Test Results

The permeability tests were performed after each increment of con-
solidation test. The flow was plotted against time until a steady state
of flow wés achieved. It was assumed a steady state was developed when
the flow stayed constant with increasing time. The plot of flow versus
time, the calculation of permeability and the results of permeability
tests are given in the Appendix II.

The permeabilities were plotted against pofosities on a log-log
scale. The power law model was used to fft the test data.

It was developed as follows:

k=00, M < 0 and Q>0 (67)
where: k = coefficient of permeability
Q = the intercept of the line when the decimal porosity is one
M = the slope of the Tine
n = decimal porosity

Q and M are constants but peculiar for each type of soil.

The curves are shown in Figures 10, 11 and 12.
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consolidation pressure, 0 in psi
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FIG. 7 .- Relationship Between Consolidation Pressure and Porosity
for Vireinia Sediment by the Fermi Function Model
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The consolidation test data were used to calculate the COeffiéient of
permeability by Tebzaghi's theory (67). Two methods were used to 6btain the
cdefficient of consolidation. The v¥_ fitting method appeared .to have a _
higher value of the coefficient of permeabil%ty than the log t‘fitting method.
However, both values are slightly higher than the.tested values by zero to
one order of magnitude. The results were plotted in Figures 10, 11, and 12.

The rate of change of permeability with respect to porosity can be

*

computed from the permeability equation:’

QE.;‘QMnM'] (68)

dn
This rate of change is a function of porosity and is plotted on the per-
meability figures for the Mississippi delta sediment and Gulf of Mexico

sediment. This is shown in Figures 13 and 14.

Conclusions for Experimental Part of the Study
A new experimental method of obtaining high.pressure consolidation
test data and direct measurement of permeability has been developed. Based
on the results obtained it is concluded that: |
1. The marine sediments tested did not exhibit the usually assumed
linear relationship between void ratio and log of consolidation
pressure.
2. There is méximum porosity for each marine sediment.
3. Permeabilities of clays can be meaﬁured directly and there is no
need to estimate this value using the Terzaghi's consolidation theory.
In fact, there can be wide discrepancies between the measured
permeability andAthat permeabi]ity computed from a consolidation

test.
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4., The Fermi function seems to be a good model for the relationship
Between the pofosity and the consolidation pressure.
5. The power law séems to be an excellent model for the re]afionship
~ between porosity and permeability.
6. The bermeabi]ity decreased at least seven orders of magnitude
faster than the porosity for the materials tested.‘ |
~Further work should be done to include a controlled thermal environment
as a method to investigate the temperature effect on the relationship between
pressure, permeability, and porosity. More soil samples should be tested to

provide a geﬁeral correlation among the same type of soil.
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Appendix I

So]ufion of the Non-Linear Differential Equation for the Geostatic Pore

Pressure When the Temperature Varies Linearly with Depth.

The pore-pressure u considered here is only geostatic pressure and includes

no overpressure or excess pressure, z is the depth and 0 is the temperature.

The equation is derived and terms define in part III of the Theoretical Part of

and y' = w' - S?LEI

70

the Study.
As given:
% = g1(z) + f (u) + uhy(z) (56)
where,
a1(z) = Ayz + Az% + Ayz®
~f (u) = Byu + B,u? as defined by equations (51) through (54)
" and
hi{z) = C,z + C,22. )
A recombination of terms gives:
QU (By + Caz + Coz?)u - Bou® = 1+ Ayz + Az + Asz® (69)
or,
%% ;gz(z)u-Bzuz = f(z) (70)
where g,(z) = By + C,z + C,2z2 (71)
and f(z) = 1+ A,z + A,22 + Asz®, (72)
For the first transformation let u = X%fl , then, u' = Xééél_. (73), (74)
Substitution into the equation gives
£l o) o) B L
and when terms are cancelled
y' - 9(z) y'- y* = B,f(z) . (76)
_For the second transformation let
y=w- Elgl- (77)
then y2 =-w? - g(z)w + SéiZl- (78)
' | (79)
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Substitution into the equation gives

L g‘lz'z—) ~g2) w- L2 g w | (80)

- 9fi§l. = B, f(z) ) (81)

or with cancellation of terms.

w' - w? o= EL%EL - E%LE) + B.f(z). : (82)

The function of z on the left side of the equal sign can be called

n(z) = 9420 - &2) 4 gyp(y) . (83)
~ then w' - w2 = h (2) (84)

For the third transformation let

:_.Y.L : 5
W v (85)
or v = g~/ WdX (86)
and v' = - we /WX (87)

This means that

vvo= —wy (88)
and v = - wv' - v . _ | (89)
or v"' = w2v - w' = v(w?-w ). | ' (90)
Since w' = h(z) + QZ | (91)
then v" = v[w?-h(z)-w?) | (92)
or v = -vh(z) (93)

and finally

v' + vh(z) = 0 ' (94)
The nonlinear first order equation has now been transformed into a second order
linear equaiton. The solution can be obtained by the method of undetermined
coefficients.

Let v = Ay + Az + A222 + sieee -.. . (95)

71



2

AoHu + AHs + AsHp + AsH, +.AJHe + 0 + 304, =

and v! = A} + 2R2z + 3R3z% ¢ L.eeeen... - (96)
so that v" = 2A2 + 6Asz + 12A,2% + . ......... (97)
where h(z) = Hg + Hyz + H,z? + H3z® + H,2" ' (98)
and the coefficients Hy ---- H, are all known

Substitution into the equation gives

20 + 6Asz + 12A422 + .einrrenn. ' (99)
+ (Ao + Ayz + Az% +....) (Ho + Hyz + Hpz? + Haz?® + Hyz%) =0 (100)
Therefore the coefficients of the sum of the terms of the same power of z
AeHo + 0 + 2R = 0

AcHi + AjHo + 0 + 6A; = 0

AgH2 + AjHy + AHo + 0 + 12A, = O

AoHs + AtHz + AHy + AjHo + 0 + 20A_ = 0
(101)

i
o

+

AiHy + AHs + AgHy + AuHy + AsHo + 0 +42H, = 0

Bqth Ao and A; are known from boundary condition'when z =0.
The solution of this system of equations is as follows. The constants are

polynomials of (AO,A1, Ho’ Hi, Hzs Hs + Hy)

A, = ‘Aogo

A, _ (A, ; AHo) ) o
A _ (AOH% +]§1H1+ AsHg) } _(AO(HZ—.ggi ‘fZAlHl)

he = (RoMa * AHs * AgHy + AsHo) _p cu wwl - wowy) o Al - Ho?))

20 5 z =
20 .
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& |

A

Az

Re

+ AyHy + AzH,

+ AsH,

+ AuHy) =

_ (Aot

(AH,

, 30
+ AzH; + AzH,

+ Ang

+ AsHg)

(AzH,

42
+ AjH; + A H,

+ AsH;

(102)

+ AgHy)

(AsHu

56
+ A H; + AgH,

+ AgH,y

+ AsH,)

63

+ AsHs + AgH,

+ AH,

+ AgHy)

Substitution will show that A,,

coefficients Hy, Hy, Hy, H; and

Az

As

A,

As

Ae

Ay--- An are functions only of A;, A; and the known

Hy . The value of the A's are given by

= AgHso -
2
= ~(AcH; + AyHy)
6
= ~(AoHz + AHy - A ﬂgi_= ~(Ao(Hy - He? + A Hy)
2 2 (103)
12 12

2

o (Ao + A, - (RollHe  AdbHe - Ao,
12

4 H02
- ~{Ao(Hs - T HiHo) + A} (H - 'g;“))

12

Since the value of v is now known as function of z, using the inverse of the

three transform will allow the geostatic pore pressure u to be calculated as a

function of depth.
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Appendix II
Experimental Study Calculation Methods and Test Data

CALCULATION OF PERMEABILITY

Darcy's équation is g = kia. The rate of flow, q, was calculated as
described above after a steady state was reached. The pressure gradient, 1,
is the difference between head pressure and back pressure divided by the
sample length. The cross sectional area of the soil sample is a, and the

same as the area of the consolidometer.

For convenience, the conversion of units was reduced to a constant

number:
q = kia o (104)
or ’ -
k = {% (105)
2 2 ' '
g - 116 (/4)(2.50)%h) 3, | (106)
(aAt) (60)
. (P-H/5.19)(70.43) | ‘ (107)
i= {L)(Z?é4) )‘Cm/cm
a=(2.5)2(w4)(2.50)2 = 31.67 cn® - (108)

2 2
1/16 /4)(2.54)" (Ah
( ) %2¥)%é0) )~ (4h) (109)

P-H/5.19)(70.43
( (L)(2?§4) ) 31.67)

after reduction:

k = 3.76x107/ (P-§§2?§53(At) em/sec (110)
where Ah = change of water level at downstream end, cm.
L = Tength of sample, in.
P = head water pressure, psi.
H = mercury height (back pressure), cm.
At = elapsed time, min.
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TABLE 6 .-Results of Consolidation and

Permeability Test for Virginia Sediment

Load Sample Void Porosity Permeability
height ratio, n k
(psi) (in.) e (%) (em/sec)
o | 1.4248 | 2.533 71.7 -
143 | 0.6938 0.721 41.9 2.3x10"7
286 | 0.6432 0.595 37.3 - 3.3%x10"10
572 | 0.5942 0.473 32.1 8.0x10" 11
1,144 | 0.5469 0.356 26.3 3.6x10" 12
1,716 | 0.5309 0.316 24,0 1.9x10712
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TABLE 7 .~Results of Consolidation and Permeability Test

for Mississippi Delta Sediment

Permeability

Load Sample Void Porosity
(psi) ?gi;?t ragio, (2) (cm;sec)
0 1.4459 3.710 78,97 -
36 1.3569 3.420 77.38 -
143 0.7128 1.220 54,93 1.5x107°8
286 0.5061 0.650 39.34 5.8x10 0
572 | 0.4467 0.460 31.28 8.3x10" 11
1,184 | 0.4129 | 0.350 25.65 7.0x10”
2,288 0.3855 | 0.260 20.37 b.3x10” 12
3,432 | 0.3747 0.220 18.07 2.6x1071?
2,288 0.3755 0.223 18.25 -
I, 004 0.3707 0.210 |  17.17 1.2x10"1?
4,576 | 0.3685 0.200 16.69 1.1x10"1?
5,720 0.3669 0.195 16.33 4.9x10" 13
6, 570 0.3661 0.193 16.15 5.5510" 10
7,714 0.3650 0.189 15.89 4.,0x10” 13
8, 500 0.36L5 0.187 15.78 b.5x107 13
9,313 0.3633 0.183 15;50 4. 0x10" 2
10,125 0.3619 0.179 15.17 3.8x10" 13
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TABLE 8.-Results of Consolidation and Permeability Test

for Gulf of Mexico Sediment

Load Sample Void Porosity Permeability
(psi) ?ii%?t raZio. F%) (cm;sec)
0 2.1255 3.66 78.5 -
36 2.0716 3.54 78.0 2.8x10"7
72 1.8327 3.01 75,1 2.4x1077
143 1.3131 1.88 65.2 4.0x10"8 -
179 1.1568 1.53 60.5 3,1x10"°
286 0.8852 0.94 48.5 1.2x1077
572 0.7026 0.54 35,1 3.0x10" 10
1,144 0.6467 0.42 29.4 6.4x10" 11
2,288 0.5991 | 0.31 ' 23.8 1.3x10" 1t
4, 576 0.5701 0.25 19.9 3.2x10"1?
6,292 0.5541 0.215 17.7 1.9x10" 12
7,170 0.5529 0.212 17.5 1.6x10"1?
8,318 0.5509 0.208 17.2 1.2x107 2
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FIG. lS.—Relationship Between Sample Height and Log of
Time of Consolidation Test for Virginia Sediment

*P=consolidation pressure
n_=initial porosity
nf=final porosity
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sample height in inch

10.7128

1.4459

log of time in minute

1.3569

0.5061

0.4467

10 , 100 1000 10000

*

P=36 psi
n =78.8%
n§=77.4%

P=572 psi

n =39.3%
o)

ng~31.3%

P=1144 psi
n =31.3%

o
nf=25.7%

1 'l 1

0.4129

FIG. 16 .-Relationship Between Sample Height and Log of
Time of Consolidation Test for Mississippi Delta Sediment

*

P=consolidation pressure
no=initial porosity
nf=final porosity
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sample height in inch

. 0.3747

0.1 1.0 10 - 100 1000 10000

log of time in minute

0.4129 . : :
P=2288 psi
n =25.7%
o}

0.3855

0.3755]

nf=20.41

P=3432 psi
n =20.47%

o
nf=18.lZ

—

0.3707

P=2288 psi
n =18.1%
n?=18.32 P=4004 psi
"n _=18.3%
o
nf=l7.2%

0.3685

P=4576 psi
n =17.2%
ng=16.7z

P=5720 psi
no=16.7Z
nf=16.32

0.3669

FI1G. 16. (continued)
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sample height .in inch

log of time in minute

0.1

0.3669 1.0 10 100

1000 10000

0.3661

0.3650

0.3645

0.3633

P=6570 psi
n =16.37%

o
nf=16.22

P=7714 psi

n =16.2%
o

nf=15.9Z

P=8500 psi

n =15.9%
o

nf=15.8%

P=9313 psi
n =15.8%
n§=1s.5z

P=10125 psi
n_=15.5%

n¥=15.22

0.3619 L .

FIG. 16 , (continued)
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sample height in inch

log of time in minute

2.12550.1 1}0 1Q ' 100 1090 10000
*p=36 psi
n =78.57%
o
nf=78.0Z
2.0716
1.8327
P=143 psi
n =75.1%
o
qf=65.22
1.3131 — ,
P=179 psi
n =65.2%
o .
nf=60.5%
1.1568
0.8852
P=572 psi
n =48.5%
o
nf=35.1%
0.7026 L 1 T .

FIG. 17 -Relationship Between Sample Height and Log of
Time of Consolidation Test for Gulf of Mexico Sediment

N .
P=consolidation pressure
n_=initial porosity

nz=final porosity
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sample height in inch

0.1 1.0

log of time in minute

0.7026 !

0.6467

0.5991

10 . 100 ' 1000 10000
L] ¥

P=1144 psi
n =35.1%
o

nf=29.4Z

P=2288 psi

n =29.4%
o)
nf=23.82

0.5701
P=6292 psi
n =19.9%
fo)
nf=l7.7%
0.5541
P=7170 psi
n =17.7%
o)
nf=l7.5%
0.5529
: P=8318 psi
n =17.5%
n?=l7.2%
0.5509 4 1 1 *

FIG. 17. (continued)
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